RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [2015-18] B.A./B.Sc. FIRST SEMESTER (July – December) 2015 Mid-Semester Examination, September 2015

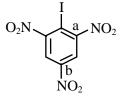
Date : 14/09/2015 Time : 11 am - 1 pm

CHEMISTRY (Honours)

Paper : I

Full Marks : 50

[2]


[Use a separate Answer Book for each group]

<u>Group – A</u>

- 1. a) Starting from the mathematical definition of the first law of thermodynamics prove that Energy of the universe is constant. i) ii) Work is a state function under adiabatic condition. [2×2] A system is divided into 'n' subsystems (i = 1,2,3,...n). x_i (i = 1,2, ...,n) are the values of a b) certain property measured on the different subsystems. The value for the same property comes out to be X when the measurement is done on the whole system. Write down how X and x_is are related when the property is extensive in nature. [2] Three moles of an ideal gas are compressed isothermally from 60L to 20L using a constant c) external pressure of 5 atm. Calculate Q, W, ΔE and ΔH . [2] OR 2. a) Starting with the definition of C_P and C_V , show that for an ideal gas $C_P - C_V = nR$. [4] b) Show graphically the work done in a process when a gas at (P_i, V_i) is expanded to (P_f, V_f) isothermally in a single step with the constant external pressure as P_f. [2] One mole of an ideal gas ($\overline{C}_v = 20.8 \text{ J/K} \text{ mol}$) is transformed at constant volume from 0°C to c) 75°C. Calculate Q, W, ΔE and ΔH . [2] 3. Two flasks are filled with N₂ gas and when both are immersed in boiling water, the gas a) pressure inside the system is 0.5 atm. One of the flasks is then immersed in an ice-water mixture, keeping the other in the boiling water. Calculate the new pressure for the system. [3] b) Define law of equipartition of energy and apply the law to calculate \overline{C}_{v} of CO₂ molecule. [3] The 1D distribution of gas molecular velocity becomes flattened at higher temperature keeping c) the area constant. Explain. [2] OR Answer **any one** of the following: [1×3] 4. a) Express the 3D distribution of gas molecular velocity according to Maxwell-Boltzmann i) and explain all terms. ii) Find out the total energy for 3D distribution of 1 mole of Ar gas molecules from energy distribution equation. b) From the definition of average quantity, related to velocity, show that $\langle p_x \rangle = \int p_x f(u_x) du_x$, where $\langle p_x \rangle$ is meant for average momentum along X direction. [3]
 - c) Explain— with height the molecules with higher mass will be less.

<u>Group – B</u>

- 5. a) Draw the orbital picture of $CH_2 = CH CN$.
 - b) Explain which C-N bond 'a' or 'b' has a shorter bond length in the following compound.

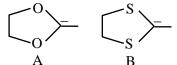
[2]

[2]

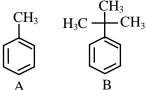
[4]

[2]

[2]

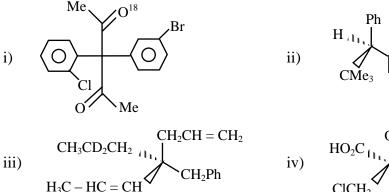

[1.5]

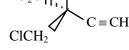
[1.5]


c) Draw all the π molecular orbital of 1,3 butadiene. Arrange them in order of increasing energy level, designate the HOMO and LUMO in the ground state.

OR

- 6. a) Write down the canonical forms of the following cation and select the most contributing structure with reason. [2]
 - b) Give the possible canonical forms of the following compound and hence compare the bond length of the three double bonds $(C_1 C_2, C_4 C_5, C_3 C_6)$. [2]
 - c) Comment on the relative stabilities of the following carbanions.


d) Explain with reason which of the following compounds has greater electron density at the para position. CH_3



- 7. a) Cite examples through their structures according to the instructions given :
 - i) A molecule having S_2 -axis showing the axis
 - ii) A molecule having pseudoasymmetric centre showing the structure in Fischer projection formula. $[1.5\times2]$
 - b) Distinguish : conformation and configuration.
 - c) Define with an example : Stereogenic centre
 - d) Write down all possible stereoisomers represented by 4-chloropheta-2, 5-diene and designate them by R/S and E/Z notations.

OR

8. a) Assign R/S configurational descriptor to the following molecules showing the priority order : [4]

(2)

- b) Write the structure of the following molecules as indicated :
 - i) Erythro 3-phenyl-2-butyl acetate (Fisher projection)
 - ii) Butanone -(Z) hydrazone
- c) Justify or criticise (<u>any one</u>) :
 - i) A molecule having (R) configuration must be dextrorotatory.
 - ii) C_3 -centre of (Z) 2- butene is a sterocentre.

<u>Group – C</u>

[2]

[2]

<u>Group C</u>				
9.	a)	•	[3]	
	b)	i) Calculate the wave length (Å) of an electron (mass = $9 \cdot 108 \times 10^{-31}$ kg) which is revolving around the nucleus of hydrogen atom with velocity one-third of the velocity of light.	[3]	
		ii) Compare the value evaluated with that of a massive body (mass = 10 kg) which is moving	[9]	
			[2]	
	c)	Draw the conclusion comparing above two results.	[1]	
	OR			
10.	a)	Establish the following (each term has usual significance) : [2+2+	⊦2]	
		i) $r_n = \{0.529 \times 10^{-10} \times n^2\} / Zm$		
		ii) $v_n = \{0.2185 \times 10^7 \times Z\} / n \text{ m/s and}$		
		iii) Number of revolutions made by the electron at n th orbit = $\{65 \cdot 711 \times 10^{14} \times Z^2\} / n^3 s^{-1}$		
		[Given : $h = 6.626 \times 10^{-34} \text{ Js}$, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$, $m = 9.108 \times 10^{-31} \text{ Kg}$,		
		$e = 1.602 \times 10^{-19} C$)		
	b)	$e = 1.002 \times 10^{-10}$ C) Derive Bohr's assumption from the (i) Sommerfeld's assumptions and (ii) de-Broglie relation.[1.5+1]	.51	
	0)	Derive Bolii's assumption from the (1) Sommerreid's assumptions and (1) de-Brogne relation.[1.9+1	.5]	
11.	a)	First ionisation potentials of coinage metals falls in the order $Cu > Ag < Au$, Give reasonable	[0]	
	b)		[2]	
	b) c)	Electron affinity of SF ₅ is among the highest known but that of SF ₆ is quite modest. Explain. The correct electronic configuration of Cu is $[Ar]3d^{10}4s^{1}$ but not $[Ar]3d^{9}4s^{2}$, explain with	[2]	
	0)		[2]	
	d)	1	[3]	
		Li Be B C N O F Ne		
		59.6 -50 26.7 121.9 -7 141.0 328.0 -116		
OR				
12.	a)	What is the basis of Pauling's electronegativity? Electronegativity is not its inherent property explain with an example.	[3]	
	b)	The interatomic distance in chlorine molecule is 1.98Å. Calculate the Allred Rochow	L- 1	
			[3]	
	c)	Successive electron affinity have negative value. Explain.	[2]	
	d)	Arrange the following ions in increasing order of their ionic radii. $H^-, Br^-, Cl^-, I^-, F^-$.	[1]	

_____ × _____